Some Useful Econometric **Techniques**

6/9/2010 0 and the contract of the c

Outline

- **Descriptive Statistics**
- z **Ordinary Least Squares**
- **Regression Tests and Statistics**
- **Violation of Assumptions in OLS Estimation**
	- **Multicollinearity**
	- **Heteroscedasticity**
	- **A t l ti Autocorrelation**
- **Specification Errors**
- **Forecasting**
- z **Unit Roots, Spurious Regressions, and cointegration**

Descriptive Statistics

- . Useful estimators summarizing the probability distribution of a variable:
- Mean

$$
\mu = \frac{\sum_{i=1}^{T} X_i}{T}
$$

• Standard Deviation

$$
\sigma = \sqrt{\frac{1}{T} \sum_{i=1}^{T} (X_i - \mu)^2}
$$

Descriptive Statistics (Cont.)

• Skewness (symmetry)

$$
S = \frac{1}{T} \sum_{i=1}^{T} \frac{\left(X_i - \mu\right)^3}{\sigma^3}
$$

z **Kurtosis (thickness)**

$$
K = \frac{1}{T} \sum_{i=1}^{T} \frac{\left(X_i - \mu\right)^4}{\sigma^4}
$$

Ordinary Least Squares (OLS)

z **E ti ti stimation**

– **Model**

$t \sim \mathcal{V}(t)$ $\mathcal{V}(t+1)t$ $\mathcal{V}(t)$ $Y_t = \beta_0 + \beta_1 X_{1t} + e$

- katalog a po **The OLS requires:**
	- **Linear relationship between** *Y* **and** *X***,**
	- *X* **is nonstochastic nonstochastic,**
	- $E(e_t) = 0$, $Var(e_t) = s^2$ and $Cov(e_t, e_s) = 0$ **for** *t* **not equal to** *s***.**

 \bullet The OLS estimator for β ₀ and β ₁ are **found by minimizing the sum of s q () uared errors (SSE) :**

> $\sum_{i=1}^{T} e_t^2 = \sum_{i=1}^{T} (Y_t - \widehat{Y}_t)^2 = \sum_{i=1}^{T}$ $\Big($) $\Big($) $=$ > $\left| I_{1}-I_{1}\right|$ = > $\left| I_{1}-D_{0}-I_{2}\right|$ *T* $\boldsymbol{t} = 1 \setminus t$ $\boldsymbol{V} = \boldsymbol{V} \mathbf{1} \cdot \mathbf{1}$ *T* $i=1$ $\begin{matrix} t & t \\ t & t \end{matrix}$ *T* $Y_{i=1}e^{2}_{t} = \sum_{i=1}^{n} (Y_{t} - Y_{t})^{2} = \sum_{i=1}^{n} (Y_{t} - \beta_{0} - \beta_{1}X_{t})^{2}$ 2 $\sum_{i=1}^r \binom{r}{t}$ $\sum_{i=1}^r \binom{r}{t}$ $\sum_{i=1}^r \binom{r}{t}$ 2 1 $\hat{Y}_t^2 = \sum_{i=1}^T (Y_t - \hat{Y}_t)^2 = \sum_{i=1}^T (Y_t - \hat{\beta}_0 - \hat{\beta}_1)^2$ -1 t $\sum_{i=1}$ ζ t $\sum_{i=1}$ ζ t $\sum_{i=1}$ ζ $\sum_{i=1}$ ζ $\sum_{i=1}$ ζ $\sum_{i=1}$

• Minimizing the SSE is equivalent to: $\left(\sum_{i=1}^{T} \hat{e}^{-2} t\right) = e^{-2} \left(\sum_{i=1}^{T} \hat{e}^{-2} t\right)$ $0, \frac{\sqrt{1+1}}{1} = 0$ 11 2 1 2 $\frac{\partial}{\partial \beta}$ = \widehat{O} ∂ β \circ \hat{O} $\left(\sum_{i=1}^{T} \hat{e}^{-2} t\right)$ \hat{O} $\left(\sum_{i=1}^{T} \hat{e}^{-2} t\right)$ β and β and β and β and β and β *T* $i = 1$ e^{t} *T* \hat{e}^2 \hat{e}^2 \hat{e} \hat{e} \hat{e}

z **Estimators are:**

 $\hat{\overline{\beta}}_{\scriptscriptstyle 0} = \vec{Y} - \hat{\overline{\beta}}_{\scriptscriptstyle 1} \bar{X}$ = −

$$
\widehat{\beta}_1 = \frac{Cov(X, Y)}{Var(X)} = \frac{\sum_{i=1}^T \left(X_t - \overline{X}\right) \left(Y_t - \overline{Y}\right)}{\sum_{i=1}^T \left(X_t - \overline{X}\right)^2}
$$

z **Properties of OLS estimators:**

 β_0 and β_1 are unbiased estimators $\overline{}$ $\overline{}$ $(\beta_0) = \beta_0^{},\quad E(\beta_1) = \beta_1^{}$ $=$ β_0 , $E(\beta_1)$ $=$ β $E(\hat{\beta}_0) = \beta_0$, $E(\hat{\beta})$ $N(\beta_0, \sigma_{b_0}^{-2}), \beta_1 = N(\beta_1, \sigma_{\beta}^{-2})$ 2 $1 - \cdot \vee \vee_1$ 2 $\beta_{\raisebox{-0.75pt}{\tiny 0}}\!=\!N(\beta_{\raisebox{-0.75pt}{\tiny 0}},\sigma_{\raisebox{-0.75pt}{\tiny b_0}}^{-2}),\ \ \ \beta_{\raisebox{-0.75pt}{\tiny 1}}\!=\!N(\beta_{\raisebox{-0.75pt}{\tiny 1}},\sigma_{\beta_{\raisebox{-0.75pt}{\tiny 1}}})$ $=\mathrm{N}(\beta_0^-, \sigma_{\mathrm{b}_0}^{-2}), \ \ \beta_1^+$ $=\mathrm{N}(\beta_{\!\scriptscriptstyle 1}^{},\sigma$ \cap) is the contract of \cap \cap

 They are normally distributed – **Minimum variance and unbiased estimators**

Example: Private Investment

- \bullet FIR_t = b₀ + b₁RINT _{t-1} + b₂INFL _{t-1} + b₃RGDP **t-1 ⁺ b ⁴NKFLOW t-1 + e t**
- **One can run this regression to estimate private fixed investment**
	- **A negative function of real interest rates (RINT)**
	- **A negative function of inflation (INFL)**
	- **A positive function of real GDP (RGDP)**
	- **A positive function of net capital flows (NKFLOW)**

Regression Statistics and Tests

 R 2 is the measure if goodness of fit:

$$
R^{2} = \frac{SSR}{TSS} = \frac{\sum_{i=1}^{T} (\hat{Y}_{i} - \overline{Y})^{2}}{\sum_{i=1}^{T} (Y_{i} - \overline{Y})^{2}} = 1 - \frac{\sum_{i=1}^{T} (Y_{i} - \hat{Y})^{2}}{\sum_{i=1}^{T} (Y_{i} - \overline{Y})^{2}} = 1 - \frac{SSE}{TSS}
$$

- \mathbf{r} **Limitations:**
	- \Box **Depends on the assumption that the model is correctly specified**
	- **R 2 is sensitive to the number of independent variables of**
	- \Box **If intercept is constrained to be equal to zero, then R2 may be negative.**

Meaning of \mathbb{R}^2

 12

Regression Statistics and Tests

- z **Adjusted R 2 to overcome limitations of** z **R 2 = 1-SSE/(T- K)/TSS/(T-1) ● Is β**_i statistically different from zero? z **When e t is normally distributed, use** *t-*
	- ${\bf f}_{\bf k}$ $\bf t$ $\bf k}$ to test the null hypothesis $\beta_{\bf i} = {\bf 0}.$

 $-$ A simple rule: if $t_{\text{(T-k)}}$ > 2 then β_{i} is significant.

$$
t_{(T-k)} = \frac{\hat{\beta}_i - \beta_i}{S_{\hat{\beta}_i}}
$$

Regression Statistics and Tests

- **Testing the model:**
	- F-test: F-statistics with k-1 and T-k degrees of **freedom is used to test for the null hypothesis:**
	- β **1=** β **2=** β **3=…=** β **3**β **^k=0**
	- **The f-statistics is:**

$$
F_{(k-1,T-k)} = \frac{(T-k)R^2}{(k-1)(1-R^2)}
$$

 The F test may allow the null hypothesis <u>β₁=β₂=β₃=…=β _k=0 to be rejected even when</u> **none of the coefficients are statistically si gnificant b y individual t-tests. g y**

 \blacksquare

Violations of OLS Assumptions

z **Multicollinearity**

– **When 2 or more variables are correlated (in the (in multi variable case) with each other. E.g.,**

 $Y_t = \beta_0 + \beta_1 X_{1t} + \beta_2 X_{2t} + e_t$

 Result: high standard errors for the parameters and statistically insignificant coefficients.

– **Indications:**

- **Relatively high correlations between one or more explanatory variables.**
- **High R 2 with few significant t-statistics. Why?**

 2 $(X$ \cdot X $)^{-1}$ \rightarrow *X X* ˆ σ (X X) $\rightarrow \infty$ *and*

 $\frac{\rho_i}{\rho_i} \rightarrow 0$ \rightarrow *i* σ $_{\beta}$ β

- Heteroscedasticity: when error terms do not have constant variances σ^2 .
	- Consequences for the OLS estimators:
	- They are unbiased $[E(\beta)=\beta]$ but not efficient. Their variances are not the minimum variance.
	- Test: White's heteroscedasticty test.

z **Autocorrelation: when the error terms from different time periods are correlated [e ^t=f(et-1,et-2,…)]:** – **Consequences for the OLS estimators:** • **They are unbiased [E(**β) **=** β] **but not efficient.** – **Test for serial correlation: Durbin-Watson for first order serial correlation:**

$$
DW = \frac{\sum_{t=2}^{T} (\hat{e}_t - \hat{e}_{t-1})^2}{\sum_{t=1}^{T} (\hat{e}_t)^2}
$$

- \bullet **Autocorrelation (cont.):**
- \bullet **Test for serial correlation (cont.)**
- \bullet **•** Durbin-Watson statistic (cont.)
- \bullet **The DW statistic is approximately equal to:**

$$
DW \approx 2(1 - \rho_1) = 2\left(1 - \frac{Cov(\hat{e}_t, \hat{e}_{t-1})}{Var(\hat{e}_t)}\right)
$$

where

$$
e_{_t} = \rho_1 e_{_{t-1}} + u_{_t}
$$

- Note, if $\rho_1 = 1$ then DW =0. If $\rho_1 = -1$ then DW =4. For $\rho_1 = 0$, **DW 2DW =2.**
- \mathbf{u} . **Ljung-Box Q test statistic for higher order correlation.**

) ⎟

 \int

 \hat{e}

t

Specification Errors

z **Omitted variables:** – **True model:** t \sim t ^{*t*} \sim t ^{\sim} t ^{t} \sim t ^{t} \sim t ^{t} \sim t $Y_t = \beta_0 + \beta_1 X_{1t} + \beta_2 X_{2t} + e$ – **Regression model:** $Y_t = \beta_0 + \beta_1 X_{1t} + e_t$ – **Then, the estimator for** β **1 is biased.** $=$ $\beta_0 + \beta_1 X_{1t} + e_1$ $(X,)$ (X_{1}, X_{2}) $(\beta_1^*) = \beta_1 + \beta_2 \frac{\sigma \sigma \sqrt{A_1^2 + A_2^2}}{\sigma^2}$ $V^{1} P_1 P_2$ $Var(X)$ $E(\beta_1^*) = \beta_1 + \beta_2 \frac{Cov(X_1, X_2)}{S}$ $= \beta_{1} + \beta_{2}$ 2

Specification Errors (Cont.)

• Irrelevant variables: – **True model:**

> $t \sim \mathcal{V}(t)$ $\mathcal{V}(t+1)t$ $\mathcal{V}(t)$ $Y_t = \beta_0 + \beta_1 X_{1t} + e$

Regression model:

$$
Y_t = \beta_0 + \beta^*_{1} X_{1t} + \beta_2^* X_{2t} + e_t
$$

– **Then the estimator for** β **is still unbiased Then, 1 unbiased. Only efficiency declines, since the variance of** β **1* will be larger than the variance of** β **1.**

Forecasting

z **A forecast is:**

- **A quantitative estimate about the likelihood of future events which is developed on the basis of current and past information information.**
- **Some useful definitions:**
- **Point forecast forecast: predicts ^a single number for Y : in each forecast period**
- **Interval forecast forecast: indicates an interval in which : the realized value of Y will lie.**

Unconditional Forecasting

z **First estimate the econometric model**

$t \sim \mathcal{V}(t)$ $\mathcal{V}(t+1)t$ $\mathcal{V}(t)$ $Y_t = \beta_0 + \beta_1 X_{1t} + e$ $e_{_t}\thicksim N\Big(0,\sigma^2\Big)$

z **Then, compute:**

$1-\rho_0+\rho_1\Lambda_{1T+1}$ ˆˆˆ Y_{T+} $=$ $\beta_{0} + \beta_{1}X_{1T+}$

assuming XT+1 is known. This is the point forecast.

Unconditional Forecasting (Cont.)

 \bullet **The forecast error is:**

$$
\hat{e}_{T+1} = \hat{Y}_{T+1} - Y_{T+1} = (\hat{\beta}_0 - \beta_0) + (\hat{\beta}_1 - \beta_1)X_{T+1} - e_{T+1}
$$

 \bullet **•** The 95% confidence interval for Y_{T+1} is:

$$
\hat{Y}_{T+1} - t_{0.5} S_f \le Y_{T+1} \le \hat{Y}_{T+1} + t_{0.5} S_f
$$

 \bullet **where**

$$
s_f^2 = \hat{\sigma}^2 \left[1 + \frac{1}{2} + \frac{\left(X_{T+1} - \overline{X}\right)^2}{\sum_{t=1}^{T} \left(X_t - \overline{X}\right)^2} \right]
$$

 \bullet • Which provides a good measure of the precision of the 6/9/2010 $\overline{0}$ and $\overline{24}$ **forecast.**