Some Useful Econometric Techniques

Outline

- Descriptive Statistics
- Ordinary Least Squares
- Regression Tests and Statistics
- Violation of Assumptions in OLS Estimation
 - Multicollinearity
 - Heteroscedasticity
 - Autocorrelation
- Specification Errors
- Forecasting
- Unit Roots, Spurious Regressions, and cointegration

Descriptive Statistics

- Useful estimators summarizing the probability distribution of a variable:
- Mean

$$\mu = \frac{\sum_{i=1}^{T} X_{i}}{T}$$

Standard Deviation

$$\sigma = \sqrt{\frac{1}{T} \sum_{i=1}^{T} (X_i - \mu)^2}$$

Descriptive Statistics (Cont.)

Skewness (symmetry)

$$S = \frac{1}{T} \sum_{i=1}^{T} \frac{(X_i - \mu)^2}{\sigma^3}$$

Kurtosis (thickness)

$$K = \frac{1}{T} \sum_{i=1}^{T} \frac{\left(X_{i} - \mu\right)^{4}}{\sigma^{4}}$$

Ordinary Least Squares (OLS)

Estimation

- Model

$Y_t = \beta_0 + \beta_1 X_{1t} + e_t$

- The OLS requires:
 - Linear relationship between Y and X,
 - X is nonstochastic,
 - E(e_t) = 0, Var(e_t) = s² and Cov(e_t, e_s)=0 for t not equal to s.

• The OLS estimator for β_0 and β_1 are found by minimizing the sum of squared errors (SSE):

 $\sum_{i=1}^{T} e_{t}^{2} = \sum_{i=1}^{T} \left(Y_{t} - \widehat{Y}_{t} \right)^{2} = \sum_{i=1}^{T} \left(Y_{t} - \widehat{\beta}_{0} - \widehat{\beta}_{1} X_{t} \right)^{2}$

• Minimizing the SSE is equivalent to: $\frac{\partial \left(\sum_{i=1}^{T} \hat{e}^{2_{t}}\right)}{\partial \beta_{0}} = 0, \quad \frac{\partial \left(\sum_{i=1}^{T} \hat{e}^{2_{t}}\right)}{\partial \beta_{1}} = 0$

• Estimators are:

 $\hat{\beta}_0 = \vec{Y} - \hat{\beta}_1 \vec{X}$

$$\widehat{\beta}_{1} = \frac{Cov(X,Y)}{Var(X)} = \frac{\sum_{i=1}^{T} \left(X_{i} - \overline{X}\right) \left(Y_{i} - \overline{Y}\right)}{\sum_{i=1}^{T} \left(X_{i} - \overline{X}\right)^{2}}$$

• Properties of OLS estimators:

 $\hat{\beta}_0$ and $\hat{\beta}_1$ are unbiased estimators $E(\hat{\beta}_0) = \beta_0, \quad E(\hat{\beta}_1) = \beta_1$ $\hat{\beta}_0 = N(\beta_{0,}, \sigma_{b_0}^2), \quad \hat{\beta}_1 = N(\beta_{1,}, \sigma_{\beta_1}^2)$

They are normally distributed
Minimum variance and unbiased estimators

Example: Private Investment

- $FIR_t = b_0 + b_1RINT_{t-1} + b_2INFL_{t-1} + b_3RGDP_{t-1} + b_4NKFLOW_{t-1} + e_t$
- One can run this regression to estimate private fixed investment
 - A negative function of real interest rates (RINT)
 - A negative function of inflation (INFL)
 - A positive function of real GDP (RGDP)
 - A positive function of net capital flows (NKFLOW)

Regression Statistics and Tests

R² is the measure if goodness of fit:

$$R^{2} = \frac{SSR}{TSS} = \frac{\sum_{i=1}^{T} \left(\hat{Y}_{i} - \overline{Y}\right)^{2}}{\sum_{i=1}^{T} \left(Y_{i} - \overline{Y}\right)^{2}} = 1 - \frac{\sum_{i=1}^{T} \left(Y_{i} - \hat{Y}\right)^{2}}{\sum_{i=1}^{T} \left(Y_{i} - \overline{Y}\right)^{2}} = 1 - \frac{SSE}{TSS}$$

- Limitations:
 - Depends on the assumption that the model is correctly specified
 - R² is sensitive to the number of independent variables
 - If intercept is constrained to be equal to zero, then R² may be negative.

Meaning of R²

12

Regression Statistics and Tests

- Adjusted R² to overcome limitations of
- R² = 1-SSE/(T- K)/TSS/(T-1)
- Is β_i statistically different from zero?
- When e_t is normally distributed, use <u>t-</u> <u>statistic</u> to test the null hypothesis $\beta_i = 0$.

- A simple rule: if $t_{(T-k)} > 2$ then β_i is significant.

$$t_{(T-k)} = \frac{\hat{\beta}_i - \beta_i}{S_{\hat{\beta}_i}}$$

Regression Statistics and Tests

- Testing the model:
 - F-test: F-statistics with k-1 and T-k degrees of freedom is used to test for the <u>null hypothesis</u>:
 - $\beta_1 = \beta_2 = \beta_3 = \ldots = \beta_k = 0$
 - The f-statistics is:

$$F_{(k-1,T-k)} = \frac{(T-k)R^2}{(k-1)(1-R^2)}$$

- The F test may allow the <u>null hypothesis</u> $\beta_1 = \beta_2 = \beta_3 = ... = \beta_k = 0$ to be rejected even when none of the coefficients are statistically significant by individual t-tests.

Violations of OLS Assumptions

Multicollinearity

 When 2 or more variables are correlated (in the multi variable case) with each other. E.g.,

 $Y_{t} = \beta_{0} + \beta_{1}X_{1t} + \beta_{2}X_{2t} + e_{t}$

 Result: high standard errors for the parameters and <u>statistically insignificant</u> <u>coefficients</u>.

– Indications:

- Relatively high correlations between one or more explanatory variables.
- High R² with few significant t-statistics. Why?

 $\sigma^{2}(X'X)^{-1} \to \infty$ and

 $\frac{\hat{\beta}_{i}}{\hat{\sigma}_{\beta_{i}}} \rightarrow 0$

- Heteroscedasticity: when error terms do not have constant variances σ².
 - Consequences for the OLS estimators:
 - They are <u>unbiased</u> [E(β)= β] but <u>not efficient</u>. Their variances are not the minimum variance.
 - Test: White's heteroscedasticty test.

<u>Autocorrelation</u>: when the error terms from different time periods are correlated [e_t=f(e_{t-1},e_{t-2},...)]:
 Consequences for the OLS estimators:
 They are <u>unbiased</u> [E(β)=β] but <u>not efficient</u>.
 Test for serial correlation: Durbin-Watson for first order serial correlation:

$$DW = \frac{\sum_{t=2}^{T} (\hat{e}_{t} - \hat{e}_{t-1})^{2}}{\sum_{t=1}^{T} (\hat{e}_{t})^{2}}$$

- Autocorrelation (cont.):
- Test for serial correlation (cont.)
- Durbin-Watson statistic (cont.)
- The DW statistic is approximately equal to:

$$W \approx 2(1 - \rho_1) = 2 \left(1 - \frac{Cov(q)}{Va} \right)$$

where

$$e_t = \rho_1 e_{t-1} + u_t$$

- Note, if ρ_1 =1 then DW =0. If ρ_1 =-1 then DW =4. For ρ_1 =0, DW =2.
- Ljung-Box Q test statistic for higher order correlation.

Specification Errors

• Omitted variables: - True model: $Y_{t} = \beta_{0} + \beta_{1} X_{1t} + \beta_{2} X_{2t} + e_{t}$ - Regression model: $Y_t = \beta_0 + \beta_1 X_{1t} + e_t$ – Then, the estimator for β_1 is biased. $E(\beta_1^*) = \beta_1 + \beta_2 \frac{Cov(X_1, X_2)}{Var(X_2)}$

Specification Errors (Cont.)

Irrelevant variables:
 – True model:

 $Y_t = \beta_0 + \beta_1 X_{1t} + e_t$

– Regression model:

$$Y_{t} = \beta_{0} + \beta_{1}^{*}X_{1t} + \beta_{2}^{*}X_{2t} + e_{t}$$

- Then, the estimator for β_1 is still unbiased. Only efficiency declines, since the variance of β_1^* will be larger than the variance of β_1 .

Forecasting

• A forecast is:

- A quantitative estimate about the likelihood of future events which is developed on the basis of current and past information.
- Some useful definitions:
- Point forecast: predicts a single number for Y in each forecast period
- Interval forecast: indicates an interval in which the realized value of Y will lie.

Unconditional Forecasting

First estimate the econometric model

$Y_t = \beta_0 + \beta_1 X_{1t} + e_t$ $e_t \sim N(0, \sigma^2)$

• Then, compute:

$\hat{Y}_{T+1} = \hat{\beta}_0 + \hat{\beta}_1 X_{1T+1}$

assuming X_{T+1} is known. This is the point forecast.

Unconditional Forecasting (Cont.)

• The forecast error is:

$$\hat{e}_{T+1} = \hat{Y}_{T+1} - Y_{T+1} = \left(\hat{\beta}_0 - \beta_0\right) + \left(\hat{\beta}_1 - \beta_1\right) X_{T+1} - e_{T+1}$$

• The 95% confidence interval for Y_{T+1} is:

$$\hat{Y}_{T+1} - t_{0.5} s_f \le Y_{T+1} \le \hat{Y}_{T+1} + t_{0.5} s_f$$

• where

$$s_{f}^{2} = \hat{\sigma}^{2} \left[1 + \frac{1}{2} + \frac{\left(X_{T+1} - \overline{X}\right)^{2}}{\sum_{t=1}^{T} \left(X_{t} - \overline{X}\right)^{2}} \right]$$

• Which provides a good measure of the precision of the forecast.

24